Sử dụng hằng đẳng thức đưa về phương trình cơ bản

Loại 1: \(\sqrt[3]{A} + \sqrt[3]{B} = \sqrt[3]{C}\,\,\,\,\,\,\left( * \right)\)

- Bước 1: Biến đổi \(\left( * \right) \Leftrightarrow {\left( {\sqrt[3]{A} + \sqrt[3]{B}} \right)^3} = {\left( {\sqrt[3]{C}} \right)^3} \Leftrightarrow A + B + 3\sqrt[3]{{AB}}\left( {\sqrt[3]{A} + \sqrt[3]{B}} \right) = C\,\,\,\,\left( {**} \right)\)

- Bước 2: Thay \(\sqrt[3]{A} + \sqrt[3]{B} = \sqrt[3]{C}\) vào \(\left( {**} \right)\) ta được: \(\left( {**} \right) \Rightarrow A + B + 3\sqrt[3]{{ABC}} = C\)

- Bước 3: Giải phương trình trên và kết luận nghiệm

Loại 2: \(\sqrt {f\left( x \right)}  + \sqrt {g\left( x \right)}  = \sqrt {h\left( x \right)}  + \sqrt {k\left( x \right)} \)  với \(\left[ \begin{array}{l}f\left( x \right) + h\left( x \right) = g\left( x \right) + k\left( x \right)\\f\left( x \right).h\left( x \right) = g\left( x \right).k\left( x \right)\end{array} \right.\)

- Bước 1: Biến đổi phương trình về dạng: \(\sqrt {f\left( x \right)}  - \sqrt {h\left( x \right)}  = \sqrt {k\left( x \right)}  - \sqrt {g\left( x \right)} \)

- Bước 2: Bình phương, giải phương trình hệ quả.

Loại 3: Căn trong căn

Sử dụng hằng đẳng thức \({a^2} + {b^2} \pm 2ab = {\left( {a \pm b} \right)^2}\) cần lưu ý: \(\left| A \right| = \left\{ \begin{array}{l}A\,\,\,khi\,\,\,A \ge 0\\A\,\,\,khi\,\,\,A < 0\end{array} \right.\)