Phương pháp đặt ẩn phụ giải phương trình chứa căn

Loại 1: \(a.f\left( x \right) + b\sqrt {f\left( x \right)}  + c = 0\)

Đặt \(t = \sqrt {f\left( x \right)}  \ge 0\) thì phương trình trở thành \(a{t^2} + bt + c = 0\)

Loại 2: \(\sqrt {f\left( x \right)}  + \sqrt {g\left( x \right)}  + \sqrt {f\left( x \right).g\left( x \right)}  = h\left( x \right)\)

Đặt \(t = \sqrt {f\left( x \right)}  + \sqrt {g\left( x \right)} \) và biến đổi phương trình về ẩn \(t\)

Loại 3: \(\sqrt {f\left( x \right)}  + \sqrt {g\left( x \right)}  = h\left( x \right)\)

Đặt ẩn phụ \(u = \sqrt {f\left( x \right)} ,v = \sqrt {g\left( x \right)} \) đưa về hệ phương trình với ẩn \(u,v\)